ON THE STATISTICAL THEORYOF SCALAR SUBSTANCE

TRANSPORT IN INHOMOGENEOUS TURBULENCE
B. A. Kolovandin and I. A. Vatutin

UDC 532.517 .4

A statistical approach to the problem of scalar substance transport in inhomogeneous turbulence is considered. Differential equations are derived for the "unknown" moments in the equations for one-point correlations. Approximate expressions for nonisotropic two-point correlation tensors are used to close the equations.

Let us examine one of the possible methods of statistically describing the transport of scalar substance (temperature, passive admixture concentration) for inhomogeneous turbulence in an incompressible fluid on the basis of equations for the one- and two-point correlations of the pulsating quantities, as well as the approximate expressions of nonisotropic two-point correlation tensors for closely disposed points. The method proposed for closing the moment equations, including the scalar substance, is analogous to the method used by the authors to analyze momentum transfer in inhomogeneous turbulence [1].

1. The fundamental equations are: the averaged equation of scalar substance transfer in the form of the diffusion equation [2]

$$
\begin{equation*}
\frac{\partial \Gamma}{\partial \tau}+U_{k} \frac{\partial \Gamma}{\partial x_{k}}+\frac{\partial}{\partial x_{k}} \overline{u_{k} \gamma}=\lambda \Delta_{x} \Gamma ; \tag{1}
\end{equation*}
$$

the equation of pulsating fluxes of the scalar substance $[3,4]$

$$
\begin{equation*}
\frac{\partial}{\partial \tau} \overline{u_{i} \gamma}+U_{k} \frac{\partial}{\partial x_{k}} \overline{u_{i} \gamma}+\overline{u_{i} u_{k}} \frac{\partial \Gamma}{\partial x_{k}}+\overline{u_{k} \gamma} \frac{\partial U_{i}}{\partial x_{k}}+\frac{\partial}{\partial x_{k}} \overline{u_{i} u_{k} \gamma}+\frac{1}{\rho} \overline{\gamma \frac{\partial \rho}{\partial x_{i}}}-v \overline{\gamma \frac{\partial^{2} u_{i}}{\partial x_{k}^{2}}}-\lambda \overline{\lambda u_{i}-\frac{\partial^{2} \gamma}{\partial x_{k}^{2}}}=0 ; \tag{2}
\end{equation*}
$$

the equation of the triple correlations in (2)

$$
\begin{gather*}
\frac{\partial}{\partial t} \overline{u_{i} u_{k} \gamma}+U_{l} \frac{\partial}{\partial x_{l}} \overline{u_{i} u_{k} \gamma}+\overline{u_{i} u_{l} \gamma} \frac{\partial U_{k}}{\partial x_{l}}+\overline{u_{i} u_{k} u_{l}} \frac{\partial \Gamma}{\partial x_{l}} \\
+\overline{u_{i} u_{k} \gamma} \frac{\partial U_{i}}{\partial x_{l}}+\frac{\partial}{\partial x_{l}} \overline{u_{i} u_{k} u_{l} \gamma}-\left(\overline{u_{i} \gamma} \frac{\partial \overline{u_{k} u_{l}}}{\partial x_{l}}+\overline{u_{i} u_{k}} \frac{\partial}{\partial x_{l}} \overline{u_{l} \gamma}\right. \\
\left.+\overline{u_{k} \gamma} \frac{\partial}{\partial x_{l}} \overline{u_{i} u_{l}}\right)+\frac{1}{\rho}\left(\overline{\left(u_{i} \gamma \frac{\partial p}{\partial x_{k}}\right.}+\overline{u_{k} \gamma \frac{\partial p}{\partial x_{i}}}\right)-v\left(\overline{u_{i} \gamma \frac{\partial^{2} u_{k}}{\partial x_{l}^{2}}}+\overline{u_{k} \gamma \frac{\partial^{2} u_{i}}{\partial x_{l}^{2}}}\right)-\lambda \overline{u_{i} u_{k} \frac{\partial^{2} \gamma}{\partial x_{l}^{2}}}=0 . \tag{3}
\end{gather*}
$$

The fourth moments in (3) are expressed in terms of the second of the Millionshchikov hypotheses [5]

$$
\begin{equation*}
\overline{u_{i} u_{k} u_{l} \gamma}=\overline{u_{i} u_{k}} \overline{u_{l} \gamma}+\overline{u_{i} u_{l}} \overline{u_{k} \gamma}+\overline{u_{i} \gamma} \overline{u_{k} u_{l}} . \tag{4}
\end{equation*}
$$

Introducing the new coordinate system [6]

$$
\begin{equation*}
\xi_{k}=\left(x_{k}\right)_{B}-\left(x_{k}\right)_{A}, \quad\left(x_{k}\right)_{A B}=\frac{1}{2}\left[\left(x_{k}\right)_{A}+\left(x_{k}\right)_{B}\right], \tag{5}
\end{equation*}
$$

let us represent the "unknown" correlations which characterize the change in pulsating fluxes of the scalar substance in (2) and (3) because of molecular effects, as [1]:

Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 20, No. 4, pp. 690-699, April, 1972. Original article submitted June 4, 1970.

[^0]\[

$$
\begin{align*}
& \lambda \overline{u_{i} \frac{\partial^{2} \gamma}{\partial x_{k}^{2}}+v \bar{\gamma} \overline{\partial^{2} \bar{L}_{i}}} \overline{\partial x_{2}^{\lambda}}=\frac{1}{4}(\lambda+v) \Delta_{x} \overline{u_{i} \gamma}+(\lambda+v)\left(\Delta_{\underline{s}} \overline{u_{i} v}\right)_{\eta}+(\lambda-v) \frac{\partial}{\partial x_{k}}\left(\frac{\partial}{\partial \xi_{k}} \overline{u_{i}} \bar{v}\right)_{0} . \tag{6}\\
& \lambda \overline{u_{i} \psi_{k} \frac{\partial^{2} \gamma}{\partial x_{l}^{2}}}+v\left(\overline{u_{i} \gamma \frac{\partial^{2} u_{k}}{\partial x_{l}^{2}}}+\overline{u_{h} \gamma} \overline{\frac{\partial^{2} u_{i}}{\partial x_{l}^{2}}}\right)=\frac{1}{4}(2 v+\lambda) \Delta_{x} \overline{u_{i} u_{k} \gamma} \\
& +\lambda\left(\Delta_{\xi} \overline{u_{i} u_{k} \gamma^{\prime}}\right)_{0} \div v\left[\left(\Delta_{\xi} \overline{u_{i} u_{k}^{\prime} y^{\prime}}\right)_{0}+\left(\Delta_{5} \overline{u_{k} u_{i}^{\prime} \gamma^{\prime}}\right)_{0}\right] . \tag{7}
\end{align*}
$$
\]

Let us write the correlaijons containing the pressure pulsations as [1]:

$$
\begin{align*}
& \overline{u_{i} \gamma \frac{\partial p}{\partial x_{k}}}+\overline{u_{k} \gamma \frac{\partial \rho}{\partial \xi_{i}}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{k}} \overline{u_{i} \gamma p} \div \frac{\partial}{\partial x_{i}} \overline{u_{k} \nu \mu}\right) \div\left(\frac{\partial}{\partial \xi_{k}} \overline{u_{i} \gamma p^{\prime}}\right)_{0} \div\left(\frac{\partial}{\partial \xi_{i}} \overline{u_{k} \gamma p^{\prime}}\right)_{c} \tag{8}
\end{align*}
$$

Let us derive the differential equations for the one-point correlations $\overline{\gamma p}$ and $\overline{u_{i} \gamma p}$ in (8) and (9). The initial equation is the Poisson equation for the pressure pulsations [2], from which the foll ${ }_{\text {fwing }}$ equations for the desired correlations are easily obtained:

$$
\begin{align*}
& \frac{1}{4_{\rho}} \Delta_{x} \overline{p \gamma}+\frac{1}{\rho}\left(\Delta_{s} \overline{p \gamma^{\prime}}\right)_{\mathbf{0}} \div \frac{\partial\left(\rho_{m n}\right.}{\partial \theta_{\mathrm{s}}} \cdot \frac{\partial}{\partial x_{m}} \overline{u_{n} \gamma} \tag{10}
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{4 \Delta} \Delta_{-} \overline{u_{i} \gamma \rho}-\frac{1}{\rho} \cdot \frac{\partial}{\partial x_{k}}\left(\frac{\partial}{\xi_{k}} \overline{u_{j} \gamma^{\wedge}}\right)_{4}-\frac{\partial U_{m}}{\partial x_{n}} \cdot \frac{\partial}{\partial x_{m}} \overline{u_{n} u_{i} \gamma} \\
& +-\frac{1}{4} \cdot \frac{\partial^{2}}{\partial x_{m} \partial x_{n}} \overline{u_{m} u_{n} u_{i} \gamma}-\frac{1}{2} \cdot \frac{\partial}{\partial x_{m_{m}}}\left(\frac{\partial}{\partial \xi_{n}} \overline{u_{m} u_{n} u_{i}^{\prime} \gamma^{\prime}}\right)_{0} \\
& -\frac{1}{2} \cdot \frac{\partial}{\partial x_{n}}\left(\frac{\partial}{\partial \xi_{m}} \overline{u_{m} u_{n} u_{i}^{\prime} \gamma^{\prime}}\right)_{0}+\left(\frac{\partial^{2}}{\partial \xi_{m} \partial \xi_{n}} \overline{u_{m} u_{n} u_{i}^{\prime} \gamma^{\prime}}\right)_{0}=0 . \tag{11}
\end{align*}
$$

The relationships (6)-(9) and Eq5 (2 D), (11) contain a number of "unknown" terms which are differential

 eween two such considered paines eo be homogeneous, and iavesligating the expressians toe the ninisotropic correlation tensors near the dunt $\xi=0$, it can be shown che authors carried out such an investigation of annisotropic correlation tensars of even and odd ranks in [1], that

$$
\begin{gather*}
\left(\Delta_{\xi} \overline{u_{i} \gamma^{\prime}}\right)_{0}=0,\left(-\frac{\partial}{\partial \xi_{m}} \overline{u_{n} \gamma^{\prime}}\right)_{0}=0,\left(\frac{\partial}{\partial \xi_{i}} \overline{\gamma p^{\prime}}\right)_{0}=0 \\
\left(\frac{\partial}{\partial \xi_{m}} \overline{u_{n} \gamma p^{\prime}}\right)_{0}=0,\left(\frac{\partial}{\xi_{k}} \overline{u_{k} u_{i} u_{m}^{\prime} \gamma^{\prime}}\right)_{0}=0 \tag{12}\\
\left(\frac{\partial^{2}}{\partial \xi_{m} \xi_{n}} \overline{u_{m} u_{n} u_{i}^{\prime} \gamma^{\prime}}\right)_{0}=0 \overline{u_{i} u_{i} \gamma}=\overline{u_{k} u_{i}^{\prime} \gamma^{\prime}}
\end{gather*}
$$

$$
\begin{equation*}
\frac{1}{\rho}\left(\Lambda_{\xi} \overline{p \gamma^{\prime}}\right)_{0}+\left(\frac{d^{2}}{\partial \xi_{m} \partial \xi_{n}} \overline{u_{m} u_{n} \gamma^{\prime}}\right)_{0}=0 . \tag{13}
\end{equation*}
$$

Taking account of (4), (6)-(9), (12), and (13), let us write (1), (3), (10), and (11) as

$$
\begin{align*}
& \frac{\partial}{\partial \tau} \overline{u_{i} \gamma}+U_{k} \frac{\partial}{\partial x_{k}} \overline{u_{i} \gamma}+\overline{u_{i} u_{k}} \frac{\partial \Gamma}{\partial x_{k}}+\overline{u_{k} \gamma}-\frac{\partial U_{i}}{\partial x_{k}} \\
& 4 \frac{\partial}{\partial x_{k}} \overline{u_{i} u_{k} \gamma}+\frac{1}{2 \rho} \cdot \frac{\partial}{\partial x_{i}} \overline{\gamma P}-\frac{1}{q}(\lambda+v) \Delta_{x} \overline{u_{i} \gamma}=0 \tag{14}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial \tau} \overline{u_{i} u_{k} \gamma}+U_{l} \frac{\partial}{\partial x_{l}} \overline{u_{i} u_{k} \gamma}+\overline{u_{i} u_{l} \gamma} \frac{\partial U_{k}}{\partial x_{l}}+\overline{u_{i} u_{k} u_{l}} \frac{\partial \Gamma}{\partial x_{l}}+\overline{u_{i} u_{k} \gamma} \frac{\partial U_{i}}{\partial x_{l}}+\overline{u_{l} \gamma} \frac{\partial}{\partial x_{l}} \overline{u_{i} u_{k}}+\overline{u_{i} u_{l}} \frac{\partial}{\partial x_{l}} \overline{u_{k} \gamma} \\
& +\overline{u_{k} u_{l}} \frac{\partial}{\partial x_{l}} \overline{u_{i} \gamma}+\frac{1}{2 \rho}\left(\frac{\partial}{\partial x_{h}} \overline{u_{i} \gamma p}+\frac{\partial}{\partial x_{i}} \overline{u_{k} \gamma p}\right)-\frac{1}{4}(\lambda+2 v) \Delta_{x} \overline{u_{i} u_{k} \gamma}-\lambda\left(\Delta_{\xi} \overline{u_{i} u_{k} \gamma^{\prime}}\right)_{0}-2 v\left(\Delta_{\xi} \overline{u_{i} u_{k}^{\prime} \gamma^{\prime}}\right)_{0}=0, \tag{15}\\
& \frac{1}{4 \rho} \Delta_{x} \overline{\gamma p}+\frac{\partial U_{m}}{\partial x_{n}} \cdot \frac{\partial}{\partial x_{m}} \overline{u_{n} \gamma}+\frac{1}{4} \frac{\partial^{2}}{\partial x_{m} \partial x_{n}} \overline{u_{m} u_{n} \gamma}=0, \tag{16}\\
& \frac{1}{4 \rho} \Delta_{x} \overline{u_{i} \gamma \rho}+\frac{\partial U_{m}}{\partial x_{n}} \cdot \frac{\partial}{\partial x_{m}} \overline{u_{n} u_{i} \gamma}+\frac{1}{4}\left(\overline{u_{m} u_{n}} \frac{\partial^{2}}{\partial x_{m} \partial x_{n}} \overline{u_{i} \gamma}\right. \\
& +\overline{u_{i} \gamma} \frac{\partial^{2}}{\partial x_{m} \partial x_{n}} \overline{u_{m} u_{n}}+\overline{u_{m} u_{i}} \frac{\partial^{2}}{\partial x_{m} \partial x_{n}} \overline{u_{n} \gamma}+\overline{u_{n} \gamma} \frac{\partial^{2}}{\partial x_{m} \partial x_{n}} \overline{u_{m} u_{i}} \\
& +\overline{u_{n} u_{i}} \frac{\partial^{2}}{\partial x_{m} \partial x_{n}} \overline{u_{m} \gamma}+\widetilde{u_{m} \gamma} \frac{\partial^{2}}{\partial x_{m} \partial x_{n}} \overline{u_{n} u_{i}}+\frac{\partial \overline{u_{m} u_{n}}}{\partial x_{m}} \cdot \frac{\partial \overline{u_{i} \gamma}}{\partial x_{n}}+\frac{\partial \overline{u_{i} \gamma}}{\partial x_{m}} \cdot \frac{\partial \overline{u_{m} u_{n}}}{\partial x_{n}}+\frac{\partial \overline{u_{m} u_{i}}}{\partial x_{m}} \cdot \frac{\partial \overline{u_{n} \gamma}}{\partial x_{n}} \\
& \left.+\frac{\partial \overline{u_{n} \gamma}}{\partial x_{m}} \cdot \frac{\partial \overline{u_{m} u_{i}}}{\partial x_{n}}+\frac{\partial \overline{u_{n} u_{i}}}{\partial x_{m}} \cdot \frac{\partial \overline{u_{m} \gamma}}{\partial x_{n}}+\frac{\partial \overline{u_{m} \gamma}}{\partial x_{m}} \cdot \frac{\partial \overline{u_{n} u_{i}}}{\partial x_{n}}\right)=0 . \tag{17}
\end{align*}
$$

Let us examine the "unknown" correlations in (15). It can be shown that the following relationships hold for isotropy

$$
\begin{gather*}
\left(\Delta_{\xi} Q_{i k, \gamma}\right)_{0}=\frac{2}{5 \sqrt{3}} S_{1}^{*} \frac{\left(-\Delta_{\xi} Q_{\gamma, \gamma}\right)_{0}^{1 / 2}}{\rho_{s, s}^{* / 2}}\left(\Delta_{\xi} Q_{i, k}\right)_{0}, \\
\left(\Delta_{\xi} Q_{i, k \gamma}\right)_{0}=\frac{1}{\sqrt{3}} S_{2}^{*}\left[\frac{3 \overline{\gamma^{2}} \rho_{s, s}^{*}-\left(\Delta_{\xi} Q_{\gamma, \gamma}\right)_{0}}{\rho_{s, s}^{*}}\right]^{1 / 2}\left(\Delta_{\xi} Q_{i, k}\right)_{0} \tag{18}
\end{gather*}
$$

where

$$
\begin{gather*}
S_{1}^{*}=\frac{\frac{\overline{\partial u_{r}^{2}}}{\partial x_{r}} \cdot \frac{\partial \gamma}{\partial x_{r}}}{\left[\overline{\left(\frac{\partial u_{r}^{2}}{\partial x_{r}}\right)^{2}}\right]^{1 / 2}\left[\overline{\left.\left(\frac{\partial \gamma}{\partial u_{n}^{2}}\right)^{2}\right]^{1 / 2}} \cdot \frac{\partial \gamma}{\partial x_{2}}\right.}=\frac{5 \sqrt{3}}{2} \cdot \frac{\rho_{s, s}^{* 1 / 2}}{\left(-\Delta_{\varepsilon} Q_{\gamma, \gamma} \gamma_{0}^{1 / 2}\right.} \cdot \frac{\left(\Delta_{\xi} Q_{s s, \gamma}\right)_{0}}{\left(\Delta_{\xi} Q_{s, s}\right)_{0}}, \\
S_{2}^{*}=\frac{\frac{\partial u_{r}}{\partial x_{r}} \cdot \frac{\partial u_{r} \gamma}{\partial x_{r}}}{\left[\overline{\left(\frac{\partial u_{r}}{\partial x_{r}}\right)^{2}}\right]^{1 / 2}\left[\overline{\left(\frac{\partial u_{r} \gamma}{\partial x_{r}}\right)^{2}}\right]^{1 / 2}}=v^{3}\left[\frac{\rho_{s, s}^{*}}{3 \bar{\gamma}^{2} \rho_{s, s}^{*}-\left(\Delta_{\xi} Q_{\gamma, \gamma}\right)_{0}}\right]^{1 / 2} \frac{\left(\Delta_{\xi} Q_{s, s \gamma}\right)_{0}}{\left(\Delta_{\xi} Q_{s, s}\right)_{0}} \tag{19}
\end{gather*}
$$

are dimensionless coefficients which are directly measurable statistical characteristics of the velocity and scalar substance fields.

Taking account of one of the conditions imposed on homogeneous, nonisotropic correlation tensors [1]

$$
\left(L_{n p, \ldots, t} \overline{u_{i} u_{j}, \ldots, u_{m}^{\prime}}\right)_{0}^{*}=\left(L_{n p, \ldots, i} Q_{i j, \ldots, m}\right)_{0}
$$

as well as (18) and (19), we obtain for homogeneous nonisotropic turbulence

$$
\begin{gather*}
\left(\Delta_{\xi} \overline{u_{i} u_{k} \gamma^{\prime}}\right)_{0}=\frac{2}{5 \sqrt{3}} S_{1} \frac{\left(-\Delta_{\xi} \overline{\gamma \gamma^{\prime}}\right)_{0}^{1 / 2}}{\rho_{s, s}^{1 / 2}}\left(\Delta_{\xi} \overline{u_{i} u_{k}^{\prime}}\right)_{0} \\
\left(\Delta_{\xi} \overline{u_{i} u_{k}^{\prime} \gamma^{\prime}}\right)_{0}=\frac{1}{1 \overline{3}} S_{2}\left[\frac{3 \overline{\gamma^{2}} \rho_{s, s}-\left(\Delta_{\xi} \overline{\gamma \gamma^{\prime}}\right)_{0}}{\rho_{s, s}}\right]^{1 / 2}\left(\Delta_{\xi} \overline{u_{i} u_{k}^{\prime}}\right)_{0} \tag{20}
\end{gather*}
$$

where

$$
\begin{gather*}
S_{1}=\frac{5 \sqrt{3}}{2} \cdot \frac{\rho_{s, s}^{1 / 2}}{\left(-\Lambda_{\xi} \overline{\gamma \gamma^{\prime}}\right)_{0}^{1 / 2}} \frac{\left(\Delta_{\xi} \overline{u_{s} u_{s} \bar{\gamma}^{\prime}}\right)_{0}}{\left(\Delta_{\xi} \overline{u_{s} u_{s}^{\prime}}\right)_{0}} \tag{21}\\
S_{2}=\sqrt{3}\left[\frac{\rho_{s, s}}{\left.3 \overline{\gamma^{2} \rho_{s, s}-\left(\Delta_{\xi} \overline{\gamma \gamma^{\prime}}\right)_{0}}\right]^{1 / 2} \frac{\left(\Delta_{\xi} \overline{u_{s} u_{s}^{\prime} \gamma^{\prime}}\right)_{0}}{\left(\Delta_{\mathrm{s}} \overline{u_{s} u_{s}^{\prime}}\right)_{0}}} .\right.
\end{gather*}
$$

It follows from (20) that the system of equations (1), (14)-(17) which describes the transfer of the scalar substance flux in inhomogeneous turbulence is closed to the accuracy of two statistical coefficients S_{1} and S_{2} (which go over into S_{1}^{*} and S_{2}^{*} for isotropy), if only the problem of turbulent diffusion of the scalar substance is solved, i.e., the problem of determining the root-mean-square values of the scalar substance $\bar{\gamma}^{2}$ in a field of inhomogeneous turbulence. Hence, the operator $(-\Delta \overline{\gamma \gamma})_{0}$ together with $\bar{\gamma}^{2}$ defines the microscale of the scalar substance pulsations in homogeneous nonisotropic turbulence

$$
\begin{equation*}
\rho_{\gamma, \gamma}=\frac{1}{6 \overline{\gamma^{2}}}\left(-\Delta_{\mathbf{\xi}} \overrightarrow{\gamma \gamma^{\prime}}\right)_{0} \tag{22}
\end{equation*}
$$

which agrees, for isotropy, with the known microscale of the temperature field [7]

$$
\rho_{\gamma, \gamma}^{*}=\frac{1}{6 \overline{\gamma^{2}}}\left(-\Delta_{r} Q_{\gamma, \gamma}\right)_{0}=\frac{1}{2}\left(-\frac{\partial^{2} R_{\gamma \gamma}}{\partial r^{2}}\right)_{0}=\frac{1}{\lambda_{\gamma}^{2}}
$$

2. Let us consider the question of transfer of the root-mean-square scalar substance pulsations in inhomogeneous turbulence. The fundamental equations are: the equation of a double one-point correlation of the scalar substance pulsations [7]

$$
\begin{equation*}
\frac{\partial \overline{\gamma^{2}}}{\partial \tau}+U_{k}-\frac{\partial \overline{\gamma^{2}}}{\partial x_{k}}+2 \overline{u_{k} \gamma} \frac{\partial \Gamma}{\partial \overline{x_{k}}}+\frac{\partial}{\partial x_{k}} \overline{u_{k} \gamma^{2}}-\lambda \Delta_{x} \overline{\gamma^{2}}+2 \lambda\left(\overline{\left.\frac{\partial \gamma}{\partial x_{k}}\right)^{2}}=0\right. \tag{23}
\end{equation*}
$$

the equations of the triple correlations in (23)

$$
\begin{gather*}
\frac{\partial}{\partial \tau} \overline{u_{k} \gamma^{2}}+U_{l} \frac{\partial}{\partial x_{l}} \overline{u_{k} \gamma^{2}}+\overline{u_{l} \gamma^{2}} \frac{\partial U_{k}}{\partial x_{l}}+2 \overline{u_{k} u_{l} \gamma} \frac{\partial \Gamma}{\partial x_{l}} \\
+\frac{\partial}{\partial x_{l}} \overline{u_{k} u_{l} \gamma^{2}}-\overline{\gamma^{2}} \frac{\partial \overline{u_{k} u_{l}}}{\partial x_{l}}-2 \overline{u_{k} \gamma} \frac{\partial \overline{u_{l} \gamma}}{\partial x_{l}}+\frac{1}{\rho} \overline{\gamma^{2}-\frac{\partial p}{\partial x_{k}}}-v \overline{\gamma^{2} \frac{\partial^{2} u_{k}}{\partial x_{l}^{2}}}-2 \lambda \overline{u_{k} \frac{\partial^{2} \gamma}{\partial x_{l}^{2}}}=0 \tag{24}
\end{gather*}
$$

Here the correlation $\overline{u_{k} u_{l} \gamma}$ is described by (15). The fourth-order moments in (24) are represented in conformity with the Millionshchikov hypothesis, as

$$
\begin{equation*}
\overline{u_{k} u_{l} \gamma^{2}}=\overline{u_{k} u_{l}} \overline{\gamma^{2}}+2 \overline{u_{k} \gamma} \overline{u_{l} \gamma} \tag{25}
\end{equation*}
$$

Taking account of the new coordinate system (5), let us write the correlations characterizing the change in $\bar{\gamma}^{2}$ and $\bar{u}_{\mathrm{k}} \gamma^{2}$ because of molecular effects in (23) and (24), and the correlation containing the pressure in (24) as

$$
\begin{gather*}
2 \lambda \overline{\left(\frac{\partial \gamma}{\partial x_{k}}\right)^{2}}=\frac{1}{2} \lambda \Delta_{x} \overline{\gamma^{2}}-2 \lambda\left(\Delta_{\xi} \overline{\gamma \gamma^{\prime}}\right)_{0} \tag{26}\\
\overline{v \gamma^{2} \frac{\partial^{2} u_{k}}{\partial x_{l}^{2}}}+2 \lambda \gamma u_{k} \frac{\partial^{2} \gamma}{\partial x_{l}^{2}}=\frac{1}{4}(2 \lambda+v) \overline{\Delta_{x}} \overline{u_{k} \gamma^{2}} \\
+v\left(\Delta_{\xi} \overline{u_{k} \gamma^{\prime 2}}\right)_{0}-v \frac{\partial}{\partial x_{l}}\left(\frac{\partial}{\partial \xi_{l}} \overline{u_{k} \gamma^{\prime}}\right)_{0}^{\prime 2}+2 \lambda\left(\Delta_{\xi} \overline{\gamma \gamma^{\prime} u_{k}^{\prime}}\right)_{0}+2 \lambda \frac{\partial}{\partial x_{k}}\left(\frac{\partial}{\partial \xi_{l}} \overline{\gamma \gamma^{\prime} u_{k}^{\prime}}\right)_{0}, \tag{27}\\
\overline{\gamma^{2} \frac{\partial p}{\partial x_{k}}}=\frac{1}{2} \cdot \frac{\partial}{\partial x_{k}} \gamma^{2} \bar{p}+\left(\frac{\partial}{\partial \xi_{k}} \overline{\gamma^{2} p^{\prime}}\right)_{0} . \tag{28}
\end{gather*}
$$

Let us derive the differential equation describing the change in the function $\left(\Delta_{\xi} \bar{\gamma} \gamma^{\prime}\right)_{0}$ in a field of inhomogeneous turbulence. The starting equation is the dynamic equation of two-point correlation of the scalar substance in inhomogeneous turbulence [8], which is in the coordinates (5)

$$
\begin{gather*}
\frac{\partial}{\partial \tau} \overline{\gamma \gamma^{\prime}}+\overline{u_{k} \gamma^{\prime}}\left(\frac{\partial \Gamma}{\partial x_{k}}\right)_{A}+\overline{\gamma u_{k}^{\prime}}\left(\frac{\partial \Gamma}{\partial x_{k}}\right)_{B} \\
+\frac{1}{2}\left[\left(U_{h}\right)_{A}+\left(U_{k}\right)_{B}\right]\left(\frac{\partial}{\partial x_{k}}\right)_{A B} \overline{\gamma \gamma^{\prime}}+\left[\left(U_{k}\right)_{B}-\left(U_{k}\right)_{A}\right]-\frac{\partial}{\partial \xi_{h}} \overline{\gamma \gamma^{\prime}} \\
+\frac{1}{2}\left(\frac{\partial}{\partial x_{k}}\right)_{A B}\left(\overline{u_{k} \gamma \gamma^{\prime}}+\overline{u_{k}^{\prime} \gamma^{\prime} \gamma}\right)+\frac{\partial}{\partial \xi_{k}}\left(\overline{u_{k}^{\prime} \gamma^{\prime} \gamma}-\overline{u_{k} \gamma \gamma^{\prime}}\right)-\frac{1}{2} \lambda\left(\Delta_{x}\right)_{A B} \overline{\gamma \gamma^{\prime}}-2 \lambda \Delta_{\xi} \overline{\gamma \gamma^{\prime}}=0 . \tag{29}
\end{gather*}
$$

Performing the operation $\left[-\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}}(,)\right]_{0}$ on (29), we obtain the following equation after simple manipulations associated with introducing the new coordinate system (5):

$$
\begin{align*}
& \frac{\partial}{\partial \tau}\left(\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \overline{\gamma \gamma^{\prime}}\right)_{0}+U_{k} \frac{\partial}{\partial x_{k}}\left(\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \widetilde{\gamma \gamma^{\prime}}\right)_{0}+\left(\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \overline{\gamma \gamma^{\prime}}\right)_{0} \frac{\partial U_{k}}{\partial x_{s}}+\left(\frac{\partial^{2}}{\partial \xi_{k} \partial \xi_{s}} \overline{\gamma \gamma^{\prime}}\right)_{0} \frac{\partial U_{k}}{\partial x_{p}} \\
& +\frac{1}{4} \frac{\partial^{2} U_{k}}{\partial x_{p} \partial x_{s}} \cdot \frac{\partial}{\partial x_{k}} \overline{\gamma^{2}}+\frac{1}{2} \overline{u_{k} \gamma} \cdot \frac{\partial^{3} \Gamma}{\partial x_{p} \partial x_{s} \partial x_{k}} \\
& -\frac{\partial^{2} \Gamma}{\partial x_{k} \partial x_{k}}\left(\frac{\partial}{\partial \xi_{s}} \overline{u_{k} \gamma^{\prime}}\right)_{0}-\frac{\partial^{2} \Gamma}{\partial x_{s} \partial x_{h}}\left(\frac{\partial}{\partial \xi_{p}} \overline{u_{k} \gamma^{\prime}}\right)_{0}+\frac{1}{2} \cdot \frac{\partial}{\partial x_{k}}\left[-\frac{\partial^{2}}{\partial \xi_{s} \xi_{\xi}}\left(\overline{u_{h} \gamma \gamma^{\prime}}+\overline{u_{k} \gamma^{\prime} \gamma}\right)\right]_{0} \\
& \div\left[\frac{\partial^{3}}{\partial \xi_{k} \partial \xi_{s} \partial \xi_{k}}\left(\overline{u_{k}^{\prime} \gamma^{\prime} \gamma}-\overline{u_{k} \gamma \gamma^{\prime}}\right)\right]_{Q}-\frac{1}{\mathcal{L}} \lambda \Delta_{x}\left(\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \overline{\gamma \gamma^{\prime}}\right)_{0}-2 \lambda\left(\Delta_{\xi} \frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \overline{\psi \gamma^{\prime}}\right)_{0}=0 . \tag{30}
\end{align*}
$$

Furthermore, let us derive the differential equation for the one-point correlation $\overline{\gamma^{2} p}$ in (28).
This equation is easily obtained from the Poisson equation for the pressure pulsations [1]

$$
\begin{gather*}
\frac{1}{4 \rho} \Delta_{x} \overline{p \gamma^{2}}+\frac{1}{\rho}\left(\Delta_{\mathrm{5}} \overline{p \gamma^{\prime} \gamma^{\prime}}\right)_{0}+\frac{\partial U_{m}}{\partial x_{n}} \cdot \frac{\partial}{\partial x_{m}} \overline{u_{n} \gamma^{2}} \\
-2 \frac{\partial U_{m}}{\partial x_{n}}\left(\frac{\partial}{\partial \xi_{m}} \overline{u_{n} \gamma^{\prime} \gamma^{\prime}}\right)_{0}-\frac{1}{4} \cdot \frac{\partial^{2}}{\partial x_{m} \partial x_{n}} \overline{u_{m^{2}} u_{n} \gamma^{2}}-\left(\frac{\partial^{2}}{\partial \xi_{m} \partial \xi_{n}} \overline{u_{m}} \overline{u_{n} \gamma^{\prime} \gamma^{\prime}}\right)_{0}=0 \tag{31}
\end{gather*}
$$

Using the property of nonisotropic correlation tensors for nearby points [6], we have

$$
\begin{gather*}
\left(-\frac{\partial}{\partial \xi_{m}} \overline{u_{n} \gamma^{\prime} \gamma^{\prime}}\right)_{0}=0 .\left(\frac{\partial}{\partial \xi_{m}}-\overline{u_{n} \gamma \gamma^{\prime}}\right)_{0}=0,\left(\frac{\partial^{2}}{\partial \xi_{m} \partial \xi_{n}} \overline{u_{k} \gamma^{\prime} \gamma^{\prime}}\right)_{0}=0 \\
\left(\frac{\partial^{2}}{\partial \xi_{m} \partial \xi_{n}} \overline{u_{k} \gamma \gamma^{\prime}}\right)=0,\left(\frac{\partial}{\partial \xi_{m}} \overline{\gamma^{2} p^{\prime}}\right)_{0}=0,\left(\frac{\partial}{\partial \xi_{m}} \overline{u_{n} \gamma^{\prime}}\right)_{0}=0 \tag{32}\\
\overline{u_{m}^{\prime} \gamma^{\prime} \gamma}=-\overline{u_{m} \gamma \gamma^{\prime}}
\end{gather*}
$$

Moreover, there follows from (31) for homogeneous turbulence

$$
\begin{equation*}
\frac{1}{\rho}\left(\Delta_{\xi} \overline{\rho \gamma^{\prime} \gamma^{\prime}}\right)_{0}-\left(\frac{\partial^{2}}{\partial \xi_{m} \partial \xi_{n}} \overline{u_{m} u_{n} \gamma^{\prime} \gamma^{\prime}}\right)_{0}=0 \tag{33}
\end{equation*}
$$

Taking account of (25)-(28), (32), and (33), let us write (23), (24), (30), and (31) as

$$
\begin{gather*}
\frac{\partial}{\partial \tau} \overline{\gamma^{2}}+U_{k} \frac{\partial \overline{\gamma^{2}}}{\partial x_{k}}+2 \overline{u_{k} \gamma}-\frac{\partial \Gamma}{\partial x_{k}}+\frac{\partial}{\partial x_{k}} \overline{u_{k} \gamma^{2}}-\frac{1}{2} \lambda \Delta_{x} \overline{\gamma^{2}}-2 \lambda\left(\Delta_{\xi} \overline{\gamma \gamma^{\prime}}\right)_{0}=0, \tag{34}\\
\frac{\partial}{\partial \tau} \overline{u_{k} \gamma^{2}}+U_{l} \frac{\partial}{\partial x_{l}} \overline{u_{k} \gamma^{2}}+\overline{u_{l} \gamma^{2}} \cdot \frac{\partial U_{k}}{\partial x_{l}}+2 \overline{u_{k} u_{l} \gamma} \frac{\partial \Gamma}{\partial x_{k}} \\
+\overline{u_{k} u_{l}} \frac{\partial \overline{\gamma^{2}}}{\partial x_{l}}+\overline{2 u_{l} \gamma} \frac{\partial \overline{u_{k} \gamma}}{\partial x_{k}}+\frac{1}{2 \rho} \cdot \frac{\partial}{\partial x_{k}} \overline{\gamma^{2} p}-\frac{1}{4}(2 \lambda+v) \Delta_{x} \overline{u_{k} \gamma^{2}}=0, \tag{35}\\
\frac{\partial}{\partial \tau}\left(\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \overline{\gamma \gamma^{\prime}}\right)_{0}+U_{k} \frac{\partial}{\partial x_{k}}\left(\frac{\partial^{2}}{\partial \xi_{s} \overline{\xi_{s}}} \overline{\gamma \gamma^{\prime}}\right)_{0}+\left(\frac{\partial^{2}}{\partial \xi_{k} \partial \xi_{p}} \overline{\gamma \gamma^{\prime}}\right)_{0} \frac{\partial U_{k}}{\partial x_{s}}+\left(\frac{\partial^{2}}{\partial \xi_{k} \partial \xi_{k}} \overline{\gamma \gamma^{\prime}}\right)_{0} \frac{\partial U_{k}}{\partial x_{p}} \\
\\
+\frac{1}{4} \cdot \frac{\partial U_{k}}{\partial x_{p} \partial x_{s}} \cdot \frac{\partial}{\partial x_{k}} \overline{\gamma^{2}}+\frac{1}{2} \overline{u_{k} \gamma} \frac{\partial^{3} \Gamma}{\partial x_{s} \partial x_{p} \partial x_{k}}- \tag{36}\\
-2\left(\frac{\partial^{3}}{\partial \xi_{s} \partial \xi_{p} \partial \xi_{k}} \overline{u_{k} \gamma \gamma^{\prime}}\right)_{0}-\frac{1}{2} \lambda \Delta_{x}\left(\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \overline{\gamma \gamma^{\prime}}\right)_{0}-2 \lambda\left(\Delta_{\xi}-\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \overline{\gamma \gamma^{\prime}}\right)=0,
\end{gather*}
$$

$$
\left.\begin{array}{c}
\frac{1}{4 \rho} \Delta_{x} \overline{p \gamma^{2}}+\frac{\partial U_{m}}{\partial x_{n}} \cdot \frac{\partial}{\partial x_{m}} \overline{u_{n} \gamma^{2}}-\frac{1}{4}\left(\overline{u_{m} u_{n}} \frac{\partial^{2} \overline{\gamma^{2}}}{\partial x_{m} \partial x_{n}}\right. \\
\left.+\frac{\partial \overline{u_{m} u_{n}}}{\partial x_{n}} \cdot \frac{\partial \overline{\gamma^{2}}}{\partial x_{m}}+\overline{\gamma^{2}} \frac{\partial^{2} \overline{u_{m} u_{n}}}{\partial x_{m} \partial x_{n}}+\frac{\partial \overline{\gamma^{2}}}{\partial x_{n}} \cdot \frac{\partial \overline{u_{m} u_{n}}}{\partial x_{m}}\right) \\
-\frac{1}{2}\left(\overline{u_{m} \gamma}\right. \tag{37}
\end{array} \frac{\partial^{2} \overline{u_{n} \gamma}}{\partial x_{m} \partial x_{n}}+\frac{\partial \overline{u_{m} \gamma}}{\partial x_{n}} \cdot \frac{\partial \overline{u_{n} \gamma}}{\partial x_{m}}+\overline{u_{n} \gamma} \frac{\partial^{2} \overline{u_{m} \gamma}}{\partial x_{m} \partial x_{n}}+\frac{\partial \overline{u_{n} \gamma}}{\partial x_{n}} \cdot \frac{\partial \overline{u_{m} \gamma}}{\partial x_{m}}\right)=0 . .
$$

Let us examine the unknown correlations in (36). It can be shown that the following relationships hold for isotropy:

$$
\begin{gather*}
\left(\frac{\partial^{3}}{\partial \xi_{s} \partial \xi_{p} \partial \xi_{k}} Q_{k \gamma, \gamma}\right)_{0}=-\frac{5}{2} S_{\gamma}^{*} \sqrt{\overline{u^{2}}} \rho_{s, s}^{* 1 / 2}\left(\frac{\partial^{2}}{\partial \xi_{s} \xi_{p}} Q_{\gamma, \gamma}\right)_{0} \tag{38}\\
\left(\Delta_{\xi} \frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} Q_{\gamma, \gamma}\right)_{0}=-\frac{5}{3} \cdot \frac{1}{\lambda} S_{\lambda}^{*} \sqrt{\overline{\overline{u^{2}}} \rho_{s, s}^{* 1 / 2}\left(\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} Q_{\gamma, \gamma}\right)_{0}}, ~
\end{gather*}
$$

where

$$
\begin{gather*}
S_{\gamma}^{*}=\frac{\overline{\left(\frac{\partial \gamma}{\partial x_{r}}\right)^{2} \frac{\partial u_{r}}{\partial x_{r}}}}{\left(\frac{\partial \gamma}{\partial x_{r}}\right)^{2}}\left[\overline{\left.\left(\frac{\partial u_{r}}{\partial x_{r}}\right)^{2}\right]^{1 / 2}}=-\frac{2}{5} \cdot \frac{1}{V \overline{\overline{u^{2}}}} \cdot \frac{1}{\rho_{s, s}^{* 1 / 2}} \frac{\left(\Delta_{\xi} \frac{\partial}{\partial \xi_{k}} Q_{k \gamma, \gamma}\right)_{0}}{\left(\Delta_{\xi} Q_{\gamma, \gamma}\right)_{0}},\right. \tag{39}\\
S_{\lambda}^{*}=\lambda \frac{\left(\frac{\partial^{2} \gamma}{\partial x_{r}^{2}}\right)^{2}}{\overline{\left(\frac{\partial \gamma}{\partial x_{r}}\right)^{2}}\left[\overline{\left.\left(\frac{\partial u_{r}}{\partial x_{r}}\right)^{2}\right]^{1 / 2}}=-\frac{3}{5} \cdot \frac{\lambda}{\sqrt{\overline{u^{2}}}} \cdot \frac{1}{\rho_{s, s}^{* 1 / 2}} \cdot \frac{\left(\Delta_{\xi} \Delta_{\xi} Q_{\gamma, \gamma}\right)_{0}}{\left(\Delta_{\xi} Q_{\gamma, \gamma}\right)_{0}}\right.}
\end{gather*}
$$

are dimensionless statistical characteristics of the random velocity and scalar substance fields.
For nonisotropic, homogeneous turbulence we obtain by taking account of (38) and (39):

$$
\begin{gather*}
\left(\frac{\partial^{3}}{\partial \xi_{s} \partial \xi_{p} \partial \xi_{k}} \overline{u_{k} \gamma \gamma^{\prime}}\right)_{0}=-\frac{5}{2 V \overline{3}} S_{\gamma} \bar{q} \rho_{\mathrm{s}, s}^{1 / 2}\left(\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \overline{\gamma \gamma^{\prime}}\right)_{0} \tag{40}\\
\left(\Delta_{\xi} \frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \overline{\gamma \gamma^{\prime}}\right)_{0}=-\frac{5}{3 \gamma \overline{3}} S_{\lambda} \bar{q} \frac{1}{\lambda} \rho_{\mathrm{s}, \mathrm{~s}}^{1 / 2}\left(\frac{\partial^{2}}{\partial \xi_{s} \partial \xi_{p}} \overline{\gamma \gamma^{\prime}}\right)_{0},
\end{gather*}
$$

where

$$
\begin{gather*}
S_{\gamma}=-\frac{2 \sqrt{3}}{5} \cdot \frac{1}{\bar{q}} \cdot \frac{1}{\rho_{s, s}^{1 / 2}} \cdot \frac{\left(\Delta_{\xi} \frac{\partial}{\partial \xi_{k}} \overline{u_{k} \gamma \gamma^{\prime}}\right)_{0}}{\left(\Delta_{\xi} \overline{\gamma \gamma^{\prime}}\right)_{0}}, \tag{41}\\
S_{\lambda}=-\frac{3 \sqrt{3}}{5} \cdot \frac{\lambda}{\bar{q}} \cdot \frac{1}{\rho_{s, s}^{1 / 2}} \cdot \frac{\left(\Delta_{\xi} \Delta_{\xi} \overline{\gamma \gamma^{\prime}}\right)_{0}}{\left(\Delta_{\xi} \frac{\left.\bar{\gamma}^{\prime}\right)_{0}}{}\right.}
\end{gather*}
$$

Therefore, the system (34)-(37) which describes the transfer of $\overline{\gamma^{2}}$ in a field of inhomogeneous turbulence, is closed to the accuracy of the two statistical coefficients S_{γ} and S_{λ} which goes over, for isotropy, into the coefficients S_{γ}^{*} and S_{λ}^{*}.

Let us note that estimated values of the statistical coefficients represented by (19) and (39) can be obtained for isotropic turbulence. Indeed, by using the general inequality which is valid for any random functions f_{1} and f_{2}

$$
\left|\overline{f_{1} f_{2}}\right| \leqslant\left(\overline{f_{1}^{2}}\right)^{1 / 2}\left(\overline{\left.f_{2}^{2}\right)^{1 / 2}}\right.
$$

the coefficients S_{1}^{*}, S_{2}^{*}, and S_{λ}^{*} can be estimated as follows:

$$
\begin{equation*}
\left|S_{1}^{*}\right| \leqslant 1+2 \sqrt{2},\left|S_{2}^{*}\right| \leqslant 1,\left|S_{\gamma}^{*}\right| \leqslant \delta_{\gamma}^{1 / 2} \tag{42}
\end{equation*}
$$

where, as has been shown in [9], the last inequality can be reinforced

$$
\begin{equation*}
\left|S_{\gamma}^{*}\right| \leqslant \frac{2}{3} \delta_{\gamma}^{1 / 2}=\frac{2 \sqrt{3}}{3} . \tag{43}
\end{equation*}
$$

The second of the coefficients (39) can be estimated by using the first Kolmogorov hypothesis on selfsimilarity. It hence follows from (36) under the isotropy condition that

$$
\begin{equation*}
S_{\lambda}^{*}=-\frac{3}{2} S_{\gamma}^{*} \tag{44}
\end{equation*}
$$

The expressions (42), (43), and (44) can also be used as rough estimates of the coefficients $\mathrm{S}_{1}, \mathrm{~S}_{2}$, S_{γ}, and S_{λ} of homogeneous nonisotropic turbulence. For a more rigorous determination of the numerical values of these coefficients it is necessary to rely on experimental results on the measurement of the quantities therein.

NOTATION

are the Cartesian coordinates ($i=1,2,3$); is the time;
is the averaged velocity;
are the velocity pulsations;
is the scalar substance (temperature, concentration);
is the scalar substance pulsation;
is the density;
is the coefficient of kinematic viscosity;
is the coefficient of molecular transfer (temperature conductivity or diffusion);
are the two-point correlation points;
is the notation of operations at $\xi=0$;
are the Laplace operators in the x_{i} and ξ_{i} space, respectively;
is the notation of functions at the point B ;
is the longitudinal correlation coefficient;
is the transverse correlation coefficient;
are the velocity components normal to and along the radius vector between two points;
is the notation of functions in isotropy;
is the correlation coefficient of scalar substance pulsations;
is the flatness factor of the probability density distribution of the derivatives of the scalar substance pulsations.

LITERATURE CITED

1. B. A. Kolovandin and I. A. Vatutin, Inzh.-Fiz. Zh., 19, No. 5 (1970).
2. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics [in Russian], Part 1, Nauka, Moscow (1965).
3. B. A. Kolovandin, Heat and Mass Transfer [in Russian], Vol. 1, Énergiya, Moscow (1968).
4. F. H. Harlow and C. W. Hirt, Los Alamos Scientific Laboratory, Rep. LA-4086 (1969).
5. M. D. Millionshchikov, Dokl. Akad. Nauk SSSR, 32, No. 9 (1941).
6. I. O. Heintze, Turbulence [Russian translation], Fizmatgiz, Moscow (1963).
7. S. Corsin, J. Appl. Phys., 23, No. 1 (1952).
8. A. M. Yaglom, Dokl. Akad. N̄auk SSSR, 69, No. 6 (1949).
9. A. M. Yaglom, Izv. Akad. Nauk SSSR, Fiz. Atm. i Okeana, 3, No. 9 (1967).

[^0]: © 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

